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Abstract 

PS PLUS
TM

 software offers power providers the ability to implement intelligent gas turbine life cycle 

management processes. Operators wish to achieve higher availability by reducing unnecessary scheduled 

outages for either inspection or repair. PS-PLUS is a SPAR
TM

-based application that uses the Monte-

Carlo (MC) method to estimate machinery remaining useful life. The method predicts the scope and 

schedule of maintenance associated with important failure modes. Other works have explored the 

Proportional Hazard Model (PHM), using EXAKT
TM

 software to accurately forecast the probability of 

failure of gas turbine components. A PHM quantitatively measures the relative importance of each 

influential risk factor (covariate) that affects life estimation. The propensities for failure are modeled as a 

function of both time dependent covariates and an item’s working age. The hybrid PHM-MC prototype 

application demonstrates Remaining Useful Life Estimation in conjunction with time dependent 

covariates such as (a) key operational duty cycle profile factors i.e. load, fuel type, starts, trips, etc, (b) 

sensor readings, and (c) borescope inspection data indicative of component health and state. This paper 

presents a conceptual design, data requirements and analysis techniques needed to fuse PHM and Monte-

Carlo simulation techniques. The hybrid system should generate accurate remaining useful life 

predictions. Those predictions form the basis of cost-effective condition-based maintenance (CBM) of gas 

turbines. Effective CBM, in contrast to time-based maintenance (TBM), profoundly improves life cycle 

performance and cost. The paper demonstrates the superiority of PHM analysis compared to traditional 

Weibull analysis in predicting lower-end failure probabilities, for example B1 and B5 lives. Because of 

the serious economic consequences of critical failures, such reliability estimates must be considered in 

business decisions related to gas turbine operation and warranty management. 

Introduction 

Traditional gas turbine maintenance policy is primarily comprised of time-based (or duty-cycle-

based) maintenance (TBM). The search to avoid unnecessary scheduled maintenance and to 

reduce failure risk is shifting attention away from planned maintenance of gas turbines and 

towards advanced condition-based maintenance (CBM) (Chen et al., 1994; Reebe, 2003; Al-

Bedoor et al., 2003). Current gas turbine CBM policy, however, is based mainly on conservative 

experience-derived engineering judgment. There is a growing interest among operators to 

investigate opportunities for reducing overall costs by supplementing that judgment with 

rigorously calculated Remaining Useful Life Estimations (RULE).  

In turbine asset management, the term "inspections" refers both to information gathering (as in 

condition based maintenance) and scheduled renewal. “Standby” and “running inspections” are 

carried out to allow for minor adjustments. They can provide much recorded information that is 

related to maintenance cost and reliability. A disassembly inspection, of which there are three 
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types (Combustion Section, Turbine Section, and Turbine Rotor), is a costly event.  Standby 

inspections apply mostly to backup and peaking units.  

In gas turbine operations, failure can be catastrophic and preventive maintenance is expensive. 

These factors alone provide ample incentive for driving decisions from all possible information 

sources. Information abounds in gas turbine operations, and its very volume challenges operators 

in using it to greatest possible effect. The information intensive nature of gas turbine operation 

and maintenance and the scale of the impact of less than optimum decisions encourage the 

examination of novel data interpretation methodologies. Two such important decisions are 1) 

When to do a turbine section inspection? and 2) When to do a rotor inspection? 

Information gathered during standby, running, and combustion section inspections contains 

potential knowledge useful for optimally planning and scheduling future Turbine Section and 

rotor inspections. Such information may be further supplemented with day-to-day sensor and 

operational profile information. Running inspections provide steady state operating parameters 

such as load versus exhaust temperature, vibration, fuel flow and pressure, lube oil pressure, 

exhaust gas temperatures, exhaust temperature spread variation, and startup time. Deviations 

from the norm relate to calibration errors and equipment health. 

Combustion section inspections are relatively short duration disassembly inspections where the 

opportunity is taken to make CBM borescope and visual inspections the results of which are 

highly related to risk and remaining useful life, thus bearing heavily on the optimal schedule of a 

subsequent turbine section or rotor inspection. The combustion section inspection includes:  

1. Visual inspection of first-stage turbine nozzle partitions. 

2. Borescope inspect turbine buckets to mark the progress of wear and deterioration of these 

parts. 1st, 2nd, 3rd buckets + nozzle. (Data related to turbine section component failure.) 

3. Borescope inspection of compressor, intermediate compressor rotor stages  

4. Borescope observation of the condition of blading in the aft end of axial-flow 

compressor. 

5. Visual inspection of the compressor inlet and turbine exhaust areas, checking condition 

of inlet guide vanes (IGVs), IGV bushings, last stage buckets and exhaust system 

components.  

The decision of when to do disassembly inspections is based on conservatively pragmatic and 

simplified engineering approximations of the combined effect of diverse operational factors that 

are known or assumed to influence component life. The major ones are: 

• Cycle effects (the number of starts) 

• Firing temperature (power setting) 

• Fuel type (gas, light, crude, residual) 

• Level of steam or water injection used to increase power and control NOx emissions. 

High cycles of "peaking machines" are associated with the failure mode "thermal mechanical 

fatigue". However continuous duty machines' dominant failure modes are creep, oxidation, and 
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corrosion leading to rupture, erosion, and deflection. Both types of duty cycles have certain 

failure modes in common. They are: high cycle fatigue, rubs/wear, and foreign body damage. 

In this paper, we propose an approach to Remaining Useful Life Estimation of gas turbines using 

PHM and Monte-Carlo simulation. The combination of the aforementioned multiple factors can 

be included in a PHM. The proposed RULE approach will provide an advanced estimation of 

machinery remaining useful life and outage scope/schedule requirements associated with 

important failure modes. It will eventually contribute to achieving higher availability by reducing 

unnecessary scheduled outages for either inspection or repair. 

In this hybrid PHM-MC prototype application, the PHM is first explored to depict the failure 

mechanism of the component associated with key failure modes. It quantifies the propensity for 

failure as a function of both time dependent covariates (e.g. operational factors, sensor readings, 

inspection information) and the working age. Then stochastic models are used to describe the 

behavior of covariates. The covariate behavior models are necessary since the RULE depends on 

future covariate values while some future covariate values are unknown and have to be 

forecasted. Finally, PS-PLUS Monte-Carlo simulation model will provide the RULE. These 

three steps will be discussed in detail in the following sections. 

Failure Distribution – Weibull PHM vs Weibull 

The failure mechanism of a component associated with a key failure mode can be described by a 

PHM. In other words, the time to failure T
c
 of a component due to a key failure mode, has the 

following expression of hazard rate 

))t(exp()t(h)t(h 0 zγ ⋅=  

where h0(t) is the baseline hazard rate, z is the covariate vector and γ is the vector of covariate 

coefficients, which reflect the impacts of covariates on the hazard. By covariates we mean any 

type of quantity that affects the hazard rates and can be attributed to every observation point for 

example type of fuel, number of starts, etc. In this paper, we adopt the Weibull distribution for 

the baseline hazard rate, i.e.,  
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where β is the shape parameter and η is the scale parameter. This form of PHM is called Weibull 

PHM. 

It should be noted that classic Weibull analysis is very sensitive to ‘mixing of populations’ i.e. 

when operation or environmental conditions that affect the hazard rates are ignored or 

erroneously accounted for in the analysis. The mixing of populations in Weibull analysis often 

results in a significant underestimation of the shape parameter. This phenomenon can be clearly 

illustrated through a simple example. Consider three sets, each consisting of 10 failure-time 

points, as listed in table 1. When analyzing the data sets separately, three ‘perfect’ Weibull fits 

are obtained (each set ‘falls’ exactly on a unique Weibull line as shown in Figure 1 with 
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Table 1: 3 sets of times to failure correlation coefficients ρ=1) and all three Weibull lines have 

the same shape parameter (slop) of β = 4.51. However, if all 

three sets are mixed and analyzed as single set then the best fit 

is a Weibull line with β = 2.46 (with ρ=0.95) as shown in 

Figure 2.  It should be noted that although the population size 

has increased three times by analyzing the sets together the 

end result was (a) with a lower confidence in the parameters’ 

estimates (lower ρ) and (b) with a considerable 

underestimation of the shape parameter (a shape of β = 2.46 

instead of β = 4.51). 

Weibull distributions exhibit smaller variance with increasing 

shape parameters. This phenomenon is especially noticeable 

in the left-hand tail (or the head) of the Weibull distributions 

or for low failure probabilities as shown in Figure 3. Figure 3 displays Weibull cumulative 

probability (distribution) functions (CDF) with different parameters - all distributions have a 

mean of 48000 hours but each distribution has different shape parameter ranging from β=1.01 to 

β=10. Underestimation of the shape parameters (β values) results in a significant 

underestimation of the time period to reach a certain level of (low) risk or probability of failure. 

This ‘type’ of time period is referred to as ‘Bp life’. Bp life is defined as the time period for 

which a new component fails with a probability of P%. In the above example, as shown in Figure 

4, the B1 and B0.5 lives for a Weibull distribution with η=29307 and β=2.46 obtained from the 

analysis when all three sets were ‘mixed’ together as one, are longer by 30% and 50% 

respectively than the B1 and B0.5 lives for a Weibull distribution with η=16549 and 

β=4.51obtained for the ‘worst case’ when the three sets were analyzed separately.   
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Figure 1: Weibull analysis of three individual 

sets 
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Figure 2: Weibull analysis with mixing 

populations 

Group A Group B Group C 

26556 12645 9157 
32729 15585 11286 
36748 17499 12672 
39989 19042 13789 
42870 20414 14783 
45605 21716 15726 
48352 23025 16673 
51298 24428 17689 
54773 26082 18887 
59847 28499 20637 
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Figure 3: Weibull CDF’s with same mean but 

different shape parameters (β-s) 
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Figure 4: B1 and B0.5 lives with mixed and 

separated populations Weibull analysis 

 

A Weibull PHM incorporates covariates in the analysis and should be envisaged as a method 

that ‘separates’ the entire population to statistically identical sub-populations. Weibull PHM 

analysis provides more accurate estimations of β that are often higher than the β estimates 

obtained from a traditional Weibull analysis. It should be noted that in reality most covariates 

vary with time and consequently each observation point is described by a whole ‘history’ of 

varying covariates values and therefore the set cannot be a-priori separated to statistically 

identical sub-populations. Such an effort is analogous to attempting to separate balls into groups 

according to their color while all the balls have many stripes of different colors. However the 

Weibull PHM analysis effectively overcomes this insoluble problem by incorporating the whole 

‘histories’ of observed covariates values into the analysis.   

Modeling Weibull PHM 

The first step of the hybrid PHM-MC prototype application is to construct a Weibull PHM – i.e. 

to estimate the parameters in the Weibull PHM described above. Fleet-wide failure data of 

tracked items in conjunction with information on the duty cycle endured by those items will be 

used in the construction of the Weibull PHM. This includes an extensive data analysis process. It 

consists of three stages: 

1. Data cleaning and preprocessing 

2. Weibull PHM parameters estimation in conjunction with 

3. Model selection. 
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Data Cleaning and Preprocessing 

Statistical PHM failure data analysis requires the gathering of historical failure (and censored) 

data and operational data of similar equipment. Experience shows that it is very common that 

data is missing, contains errors, or is incomplete. This historical operational and failure data must 

be preprocessed to ensure coherency and correctness. Preprocessing helps the user to validate the 

data and perform corrections. It involves graphical and statistical analysis through the use of a 

variety of plots and through the calculation of basic statistics. EXAKT provides a series of 

graphical tools to assist users in data preprocessing. Figures 5 and 6 present two typical 

examples.   

 

Figure 5: A graphical tool for viewing 

covariate readings 

 

Figure 6: A graphical tool for investigating 

correlation between covariates 

Using a database to store the historical operational and failure data will facilitate data cleaning 

and filtering. A database system with ODBC (Open Database Connectivity) drivers will be used 

so that it will be easy to interface with existing external corporate databases. The database in 

addition will serve as a platform for programming queries to fix data errors, to filter various data 

sets and to transform particular covariate values as linear combinations, rates or cumulative 

values. 

Intuitively it is expected that sensor readings would be highly correlated to duty cycle 

information. Operational factors are the drivers (or causes) for the deterioration or the 

progression of failure modes while the sensor readings reflect (are the effects of) deterioration  

(progression of failure modes). Incorporating both duty cycle factors and sensor readings as 

possible covariates in the PHM (or using any highly correlated covariates) may lead to the 

problem of “collinearity” among covariates and cause inaccurate numerical calculation (or even 

errors) in the PHM parameter estimation. One method to address this issue is to transform the 

data space by using a technique such as Principal Component Analysis (PCA) or Partial Least 

Squares (PLS). PCA can be used to transform the covariates into principal components that are 

uncorrelated and thus a more accurate model that uses these transformed covariates can be 

obtained.  In addition, this technique retains and uses all of the available information in the data 

when the alternative might result in a somewhat arbitrary elimination of useful covariates and 

thus a loss of information. 
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Weibull PHM Parameters Estimation 

The preferred statistical method to estimate the Weibull PHM parameters is the Maximum 

Likelihood Estimation (MLE) method. The MLE method assumes that the observed outcomes 

are the most likely set of outcomes. The likelihood function measures the probability of 

obtaining the observed outcomes as a function of explicit distribution parameters. The estimated 

parameters are the distribution parameters that maximize the likelihood function. Suppose that 

the data obtained is the right-censored data denoted by ))Tt0),t((,,T( iiii ≤≤δ z , where δi is an 

indicator having value 0 or 1, Ti is the observed failure time if δi = 1 or the censored time if δi = 

0, and )Tt0),t(( ii ≤≤z  represents the covariate readings for observed component i from 

beginning up to time Ti, n,,2,1i ⋯= . Then the likelihood function is 

[ ] [ ] ( )∏∏∏
=

δ
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where )(⋅f , )(⋅F  and )(⋅H  denote the density function, the cumulative distribution function and 

the cumulative hazard function of T
c
 respectively, and  
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Note that, for the calculation of the likelihood function, the complete continuous covariate 

function )Tt0),t(( ii ≤≤z  must be known. In practice, however, it is almost impossible to 

continuously record covariate readings. Instead, covariate readings are recorded at discrete times 

iim2i1i Tt,t,t0
i

≤≤ ⋯ . A simple but efficient approach for incorporating this historical covariate 

data into the likelihood function is to assume that the covariate function )Tt0),t(( ii ≤≤z  is a 

stepwise constant function with jumps only at discrete times iim2i1i Tt,t,t0
i

≤≤ ⋯ . 

For a complete and robust Weibull PHM analysis, several additional features are required. These 

additional issues are addressed as follows. 

Cumulative Damage Conservation 

The conditional probability density function (PDF) for the time to failure of the component, 

given that it does not fail up to time τ and given the covariate history )t0),t(( τ≤≤z , is  

( )
τ>
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This conditional PDF represents the remaining useful life distribution for the component. 

Intuitively we expect that the propensity of failure of components with different duty cycle 

histories will be different. We expect that these components will exhibit different remaining 

useful life distributions. However, from the expression of conditional PDF above, it is obvious 

that the remaining useful life distribution does not depend on the past covariate history 

)t0),t(( τ<≤z . This means that different operation profiles in the past do not affect the future. 

Clearly this is a counterintuitive and undesirable outcome.  

A simplistic way to solve the above problem is to use cumulative covariate processes rather than 

the original covariate processes when the corresponding covariates are believed to have 

cumulative effects on the hazard. However the preferred way to tackle this problem is to 
conserve the age or cumulative damage directly in the likelihood function at every 
covariate jump. The hazard function and the cumulative hazard function that conserve age or 

the cumulative damage have the form:  
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Interval Censored Data 

Usually Weibull PHM parameters analysis assumes that data include only right-censored 

observations. In engineering practice, however, components may not be monitored continuously 

and consequently some of their failure modes are not detected immediately upon their 

occurrence. In gas turbine systems the intervals between successive inspections range from 

several months up to two years. The exact time of failure contains uncertainty because the 

failures are revealed only at inspections.  If a component fails between inspections, the exact 

failure time is typically unknown. The only information is that the failure occurred in some time 

interval between two adjacent inspection times.  Accounting for this, ‘interval censored’ reality 

needs to be added to the MLE estimation method. In the likelihood function, the part 

corresponding to interval-censored data takes the form: 

{ } ( ) ( ){ }∏∏
==

−−−=−
k

1j

jj

k

1j

jj )u(Hexp)v(Hexp)v(F)u(F  

where uj is the time of inspection in which the j-th component was found failed, and vj is the time 

of last inspection in which the j-th component was still operational.  

Incomplete Data 

In some situations it may be necessary to deal with incomplete covariate data. If some covariate 
values are missing in a record, the record is considered incomplete but can still be used in the 
MLE estimation. The Expectation-Maximization (EM) algorithm is a general method of finding 
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the MLE of parameters in an underlying distribution based on a given data set with incomplete or 
missing values. 

Scarce Data 

Sometimes historical failure data may be scarce. A commonly used practice for scarce data in 

Weibull analysis is known as Weibayes.  The principle of Weibayes is to set the shape parameter 

β to a prior believed value and then to estimate the scale parameter η using the MLE procedure. 

This idea can be borrowed to handle scarce data in Weibull PHM analysis. Based on prior 

knowledge or belief (obtained, for example, from physical models), certain parameters in the 

Weibull PHM can be fixed to certain values, and then the remaining parameters in the Weibull 

PHM are estimated by MLE. 

Another popular and effective approach for handling scarce data or even no data is the Bayesian 

approach. First, prior distributions of the parameters in the Weibull PHM are constructed from 

expert knowledge or belief. Then through Baye’s Theorem, the prior distributions are updated to 

more credible posterior distributions (or estimates) of the parameters whenever new data is 

available. 

Multiple Failure Modes 

More than one failure mechanism or mode may be the cause of a part’s failure. An accurate 

PHM analysis will be based on failure modes rather than simply lumping all failure modes for 

the part into one “compound mode”. If the failure modes are identified and failures can be 

classified according to their modes, then it would be useful for the PHM software to 

automatically categorize the data record for a failure into the correct mode analysis. 

Weibull PHM Model Selection 

The final stage of constructing a Weibull 

PHM is to select the most appropriate set of 

covariates to be included in the model. The 

objective is to include only significant 

covariates in the model or exclude all the 

insignificant covariates from the model. An 

integral part of the Weibull PHM analysis is 

the systematic and scientific discrimination 

between the significant covariates and non-

influential data. Although there is no 

straightforward procedure to identify 

significant covariates, the significance of the 

covariates can be determined through 

analysis of various statistics. EXAKT 

provides a Graphical User Interface (GUI) to 

assist users to find the most appropriate PHM 

for the data available (see Figure 7).  

 

Figure 7:  EXAKT GUI for Weibull PHM 

parameter estimation and model selection 
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Several standard statistical tests are available to assist the modeler in identifying significant 

covariates. The Wald test can be used to check various hypotheses of interest about the 

parameters. The test checks whether the difference between an assumed and estimated parameter 

value is significant or not by reporting an appropriate p-value. If the p-value is small then the 

assumed parameter can be rejected. The Wald test is conducted on the shape parameter (the 

hypothesis that β=1 is tested and if the p-value is small then the hypothesis that the working age 

is not an important variable is rejected). Similarly all covariate coefficients are tested (for the 

hypothesis that γi = 0) and if the p-value is small then the hypothesis that the i-th covariate is 

insignificant is rejected.  

Another technique for model selection is to check whether a simpler sub-model can replace a 

more complicated one by using the chi-squared test based on the deviance change. The deviance 

is a numerical value obtained for every sub-model during the estimation procedure. The basic 

sub-model has the smallest deviance. The difference between the basic sub-model deviance and 

the deviance of another sub-model is called the deviance change. It is used for testing the 

hypothesis that two sub-models are statistically equivalent. For every deviance change, a p-value 

is calculated. For the basic sub-model, the deviance change is 0, and the p-value is 1, by 

definition. If the p-value for a sub-model is small, then this sub-model is considered not good 

enough to replace the basic one. If two non-basic sub-models are compared, then the one with 

the higher p-value can be considered as the one that better represents the data. 

The method of Cox-generalized residual can be applied to test for evidence that the data points 

are well represented by the Weibull PHM.  Residuals (i.e. the cumulative hazards) are calculated 

for every observed failure or suspension. The Kolmogorov-Smirnov test (K-S test) checks 

whether the residuals themselves follow, statistically, a negative exponential distribution as 

would be expected if the model fits the data. The test calculates the distance between the 

theoretical exponential distribution, and the distribution estimated from the residuals (adjusted 

for suspensions) and reports a p-value. If the p-value is small then the hypothesis that the model 

does not fit the data well can be rejected.   

Covariate Behavior Models 

Projection of significant covariate values in the future must be incorporated in Remaining Useful 

Life Estimation as they affect the equipment's propensity to fail in the future. Covariate 

projections vary with the types of covariates. We discuss two main types of covariate projection: 

duty cycle projections and sensor reading projections as follows. 

Duty Cycle Projections 

The inherent assumption is that the future operational attributes demonstrate only negligible 

variability (with the exceptions of unscheduled events such as trips) from that of the planned 

operational attributes. In practice, these plans may change considerably in time, but with every 

change new remaining useful life estimates will be calculated. In mathematical terms, virtually 

all the duty cycle attributes (with the exceptions of unscheduled events such as trips) are 

considered to be deterministic processes (i.e. their values in the future are known a-priori) and 

are direct inputs in the RULE calculations and do not require any further analysis (i.e. the 
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covariate behavior models are known). For unscheduled events such as trips, we will assume that 

they are random and their rate of occurrence is a function of other duty cycle attributes such as 

load level or firing temperature.  

Sensor Readings Projections 

Incorporating sensor data in Remaining Useful Life Estimation significantly complicates the 

covariate's behavior models. Sensor data demonstrate significant variability, and the construction 

of accurate prediction models of their future behavior is not a trivial task. Several approaches 

that may be utilized to create meaningful covariate behavior models are discussed as follows. 

Stochastic State Transition Models 

Stochastic state transition models are characterized by state transition probability or probability 

distributions. These types of models require that the possible range of values of the health 

indicator will be transformed into a series of discrete states (i.e. the continuous range is divided 

into a finite set of intervals, where each interval represents a different state). Once sets of discrete 

states for the health indicator have been established, the transition distributions between these 

states are analyzed using a similar technique to that used in survival data analysis. Transition 

probability densities between the states may depend only on the sojourn time of the present state 

(i.e. semi-Markov process) but may also depend on the sojourn times in previous states (non-

Markov process). Finally, the distributions of the exact health indicator value within each state 

are analyzed. Construction of a stochastic state transition model is a two-step procedure: 

1) Determine covariates states - In the first 

step, the ranges of values (i.e. the bands) that 

define the states of the covariates should be 

determined based on accepted data analysis 

techniques used for clustering observations. 

(Figure 8) The distributions of the covariate's 

values within each state should also be 

analyzed.  The form of covariate distributions 

within each state can be expressed either by a 

probability histogram, or by the Beta 

distribution constrained to the boundaries of 

the state bands. Alternatively, determination of 

covariate bands may be based on expert 

knowledge on the behavior of covariates. For 

example, different levels of warning limits on 

covariates may be helpful to determine the 

covariate bands  

 

Figure 8:  Covariate bands determination 

2) State transition distributions analysis - In the second step, the transition probability 

densities between the states are defined. As these probabilities may depend not only on the 

sojourn time of the present state (i.e. semi-Markov process) and the duty cycle attributes but also 

on the sojourn times in previous states (non-Markov process). Both semi-Markov and non-

Markov processes can be modeled as PHM in which the sojourn times in previous states may 
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prove to be significant (for non-Markov processes) or insignificant (for semi-Markov processes) 

covariates.  

Time Series Models 

There are two main disadvantages using stochastic state transition models. The first is the “curse 

of dimensionality” due to the exponentially increasing number of states as the number of 

covariates increases. The second disadvantage is the loss of information due to the discretization 

of some covariates in continuous scale into discrete bands. Utilizing time series models (in place 

of transition models) immediately eliminates these two disadvantages. 

Time series models attempt to identify patterns or trends of covariates over time. A typical time 

series model is the Autoregressive Moving Average (ARMA) model that is described by 

qrq2r21r1rpr2r21r10 −−−−−− −−−−+++++= AθAθAθAXφXφXφφX ⋯⋯ pr  

where Xr and Ar are the covariate vector and the white noise at time r respectively, p and q are 

order parameters, ϕϕϕϕi and θθθθi are coefficient parameters. There are three steps in developing a time 

series model: model identification, model estimation and model validation. For more time series 

models and more detail in building time series models, the reader is referred to the book by 

Brockwell and Davis (2002). 

Non-Linear Regression Models 

The underlying assumption behind non-linear regression models approach is that sensor readings 

demonstrate trends and these trends can be described by underlying functions of time (i.e., the 

component deteriorates with time and the sensor readings reveal and correspond to the levels of 

deterioration). The form of underlying function to which the data is fitted should therefore be 

based on an engineering model associated with the physics of the failure mode. However, if an 

appropriate engineering model cannot be predetermined then the form of function, which 

demonstrates of being the best fit for multiple histories of data, could be selected. The option to 

use non-linear regression methods, in which the data points are associated with weight that 

increases with time of the measurement, is also being explored. 

Remaining Useful Life Estimation – PS-PLUS RULE Model 

The calculation of the expected remaining useful life distribution of a system requires: 

a) The ability to model the covariates’ behavior as a function of time. 

b) The ability to change the failure modes’ distribution parameters dynamically while 

conserving the age of the components (or in other words, in a sampling process there is a 

need to take into account the cumulative damage of the components at instances at which the 

components’ failure modes’ distributions change because the covariates’ values have 

changed). 

c) The ability to initialize to the current state of the system (taking into account the cumulative 

damage since the time of the last inspection up to the current time on the failure modes’ 

distributions).  
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PS-PLUS is a SPAR
TM 

based application that uses the 

Monte-Carlo (MC) method to predict, among several 

types of predictions (see Figures 10 and 11), the expected 

remaining useful life distributions of systems. The current 

RULE model already incorporates the bill of materials of 

the system and reliability block diagrams to provide 

system level information. The RULE model is associated 

with a Graphical User Interface (GUI) that allows “what 

if” analysis to include situation setup and output analysis. 

Users enter a planned duty cycle as an input and the GUI 

displays the impacts on the remaining life of the system 

and the criticality of components and their failure modes 

to system performance (see Figures 12 and 13). This is 

accomplished by running the simulation model that 

incorporates both past duty cycle attributes experienced 

by the system to initialize the system to its current state, 

and, the planned duty cycle to simulate the times of 

system failures. 

 

Figure 9: PS-PLUS Graphical 

Interface 

 

 

Figure 10: PS-PLUS Production Efficiency 

Predictions 

 

 

Figure 11: PS-PLUS Cost Margins Predictions 

 

Figure 12: PS-PLUS Remaining Useful Life 

Estimation Graph 

 

Figure 13: PS-PLUS Components and Failure 

Modes Criticality Table  
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The RULE model within PS-PLUS shall be extended to incorporate both deterministic and 

stochastic covariates’ behaviors and their affects on the hazards. PS-PLUS, which utilizes the 

SPAR simulation engine, also consists of clocks (to model events in which covariates change 

their values) and is capable of dynamically changing distributions at events while conserving the 

cumulative damage (i.e. cumulative hazard). 

Summary 

In this manuscript, we have presented a conceptual design of hybrid PHM-MC prototype 

application for advanced Remaining Useful Life Estimation of gas turbines. For each critical 

component in a gas turbine, a PHM is established in EXAKT to relate both the working age and 

condition information (covariates) of the component to its risk of failure.  Then a stochastic 

model is developed to describe the behavior of covariates included in the PHM. This covariate 

behavior model is required in the calculation of RULE when the future values of some covariates 

are unknown. Finally the SPAR Monte-Carlo simulation engine is used to simulate the remaining 

useful life distribution of the gas turbine based on its system structure (described by reliability 

block diagrams in SPAR), the PHMs built for its critical components, and the covariate behavior 

model built for associate covariates. 

The potential benefits of utilizing the proposed hybrid PHM-MC prototype are: 

a) Providing more accurate remaining useful life estimation, with more confidence; 

b) Achieving more effective and adaptive condition-based maintenance; 

c) Reducing unnecessary costly maintenance and overhauls, and hence achieving higher 

availability at lower cost. 
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